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We show that in d \ 2 dimensions the N-particle kinetic energy operator with
periodic boundary conditions has symmetric eigenfunctions which vanish at
particle encounters, and give a full description of these functions. In two and
three dimensions they represent common eigenstates of bosonic Hamiltonians
with any kind of contact interactions, and illustrate a partial ‘‘multi-dimensional
Bethe Ansatz’’ or ‘‘quantum KAM theorem.’’ The lattice analogs of these func-
tions exist for N [ L[d/2] where L is the linear size of the box, and are common
eigenstates of Bose–Hubbard Hamiltonians and spin-12 XXZ Heisenberg models.

KEY WORDS: Delta interation; Bose–Hubbard Hamiltonian; XXZ Heisenberg
model.

1. INTRODUCTION

In this paper we construct eigenstates to Hamiltonians of the form

HN=−C
N

i=1
Di+V(r1,..., rN)−mN

V(r1,..., rN)=0 if all ri are different,

(1)

that is, Hamiltonians with real symmetric contact interactions. The defini-
tion of such operators with the use of Dirac deltas is straightforward in
one dimension and leads to integrable systems. (1) In higher dimensions the
mere definition becomes mathematically tricky. The two- and three-dimen-
sional realization of (1) needs renormalization to zero of the interaction
strength, (2) while in four dimensions and above the family (1) reduces



to a unique element with V — 0, i.e., the kinetic energy operator (ref. 3,
Theorem X.11). One can gain an impression about how this conclusion
emerges by observing that the existence of contact interactions is closely
related to the existence of a Green’s function for the Laplacian, i.e., an
L2-solution Gz( · − rŒ) of the inhomogeneous equation

(−Dr−z) Gz(r− rŒ)=d(r− rŒ) (2)

for any complex (non-real) z. Any Hamiltonian with a contact interaction
is a self-adjoint extension of the N-particle Laplacian defined on C.-func-
tions whose support avoids the set {ri=rj, i ] j}. This symmetric operator
must have non-vanishing deficiency indices, i.e., its adjoint must have
eigenstates with complex eigenvalues. For two particles, these eigenstates
are the Green’s functions for complex values of z. If an L2-solution exists
for Eq. (2), it has a Fourier representation

Gz(r− rŒ)=
1
(2p)d

F
e ip(r− rŒ)

p2−z
dp. (3)

In one dimension this integral is convergent for any r− rŒ and yields a
bounded continuous function. In two and three dimensions > |p2−z|−2 dp is
finite. Therefore, by Plancherel’s theorem, (p2−z)−1 is the Fourier trans-
form of an L2-function which, however, diverges at r=rŒ as ln |r− rŒ| and
|r− rŒ|−1, respectively. In four dimensions and above > |p2−z|−2 dp=.
and, thus, (2) has no square-integrable solution. Now by separating off the
motion of the center of mass, the two-body problem with a d-interaction
can be reduced to a one-body problem in a potential ad. Multiplication of
a suitable function f with ad has to be interpreted as aOd, fP d, where
Od, ·P denotes the action of the linear functional d. If we want to define
A=−D+aOd, ·P d as a self-adjoint operator on L2(Rd), we have to restrict
it to functions k ¥ L2 such that Ak is also in L2 and (k, Ak) is real. So Ak
cannot contain a d, and this is why Gz has to be included in k. Actually
z=i suffices, and a straightforward computation yields that a general k in
the domain of A is of the form

k(r)=k̃(r)+ak̃(0) Re Gi(r) (4)

with

a=−
a

1+aOd, Re GiP
(5)
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and then

Ak=−Dk̃+ak̃(0) Re iGi. (6)

Here k̃ is any vector from the domain of the kinetic energy −D. The
problem appears in the denominator of a, with Od, Re GiP. This is well-
defined in one dimension and yields Re Gi(0)=

1
2`2

. In dimensions two and
three d is not defined on Re Gi. One can proceed at least in two different
ways. One may define d so that it does not feel the singularity of Gi and
set Od, Re GiP=c. Then different constants yield different operators, e.g.,
c=. gives A=−D. This more recent method was followed in ref. 4. The
original procedure of ref. 2 replaced d by a sequence dn of regular approx-
imants and a by an. When dn Q d, Odn, Re GiPQ.. In order to obtain a
nonvanishing limit for a, an then has to go to zero; otherwise we get back
the kinetic energy operator.

The general, N-particle case is much more involved since it requires
considering multiple collisions and operators with infinite deficiency
indices. The crucial question is to find the physically meaningful (lower
semibounded) self-adjoint extensions. For this purpose generalized contact
interactions have to be introduced. (5, 7) For an exhaustive mathematical
treatment the reader can consult the monographs (6, 7) which also contain a
detailed bibliography of the abundant mathematical and physical literature.
As an example from the latter, we mention the use of contact interactions
as ‘‘Fermi pseudopotentials’’ for an approximate treatment of the hard-
core Bose gas. (8) They also appear in connection with the Laughlin wave-
function (9) and the trapped boson gas, (10, 11) in which case the ground state
of the projected (to the lowest oscillator level) Hamiltonian for fixed non-
vanishing angular momenta was found. Projection to the lowest oscillator
level has a regularizing effect on the interaction, which is however not suf-
ficient to settle all problems of definition. To avoid the lower unbounded-
ness of the projected Hamiltonian and to make sure that the ground state
energy does not decrease with an increasing angular momentum, the
interaction strength still has to decrease as 1/N with the number of par-
ticles, see Eqs. (4) and (5) of ref. 10. We note that apparently all existing
mathematical results concern systems of particles in infinite space, and
cannot but anticipate the extension of these results to confined systems.

We are interested in the construction of eigenstates to the Hamilto-
nians (1) for the following reason. The delta-gas in one dimension is an
integrable system, and we would like to see whether in two and three
dimensions it preserves some trace of integrability. A partial survival of
integrability could be viewed either as a remnant of the Bethe Ansatz when

Exact Eigenstates for Contact Interactions 1053



the dimensionality is increased or as a germ of a quantum-KAM theorem
when, in the free Bose-gas, a contact interaction is switched on. The Bethe
Ansatz solution of the one-dimensional delta-gas assigns N wave numbers
to each eigenfunction. The two and three dimensional analogy would be
the existence of eigenstates which can be expressed in terms of finitely
many wave vectors. From the point of view of the KAM theory, surviving,
maybe slightly distorted, free-particle eigenstates would correspond to
classical KAM tori. (12) What we actually find are eigenstates of N bosons in
a box of linear size L which remain unperturbed by contact interactions,
are characterized by 2N wave vectors and have an energy at least of order
N3/L2.

A common feature of the operators (1) is that, on smooth functions
which vanish at particle encounters, all act as the pure kinetic energy
operator. Therefore, if this latter has eigenstates vanishing whenever ri=rj
for some i ] j, these will be common eigenstates of all members of the
family (1). For two particles in two dimensions it is very easy to give
examples. Probably the simplest of them are

sin
2np
L
(x1−x2) sin

2mp
L
(y1−y2) and cos

2np
L
(x1−x2)− cos

2np
L
(y1−y2).

We will show that such eigenstates exist for any N \ 2 in any dimension
d \ 2 and will find all of them for a system of bosons confined in a
L× · · · ×L torus L. That is, we will describe all N-particle eigenstates
k(r1,..., rN) of the d \ 2-dimensional kinetic energy operator with the fol-
lowing properties: (P1) k is L-periodic separately in each of the dN coordinates,
(P2) k is a symmetric function of r1,..., rN, and (P3) k(..., r,..., r,...) — 0. To
satisfy (P2) and (P3) at the same time, a very large number of degenerate
free-particle eigenstates will have to be combined. This becomes possible
because the kinetic energy operator is unbounded and so is the degeneracy
of the eigensubspaces. On the other hand, this explains why the energy of
these states must increase so fast with N. As the proof of Theorem 2 will
show, an interesting interpretation can be given to these functions: they can
be considered as stationary states of N impenetrable bosons on the d-torus
which interact with each other through elastic collisions, see Eqs. (19) and
(25) later. If k1, k2,... is an orthonormal basis for (P1)–(P3) eigenstates
with corresponding energy eigenvalues E1 [ E2 [ · · · , we can define a self-
adjoint operator

Helastic=C
.

i=1
Ei |kiPOki | (7)
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which, hence, is associated to such a system. Also, every member of the
family (1) can be decomposed as HN=H

−

N+Helastic, with H −N depending on
the interaction and living on the orthogonal complement of the subspace of
(P1)–(P3) eigenstates.

The problem in continuous space, that we have discussed above, will
be presented in Section 2. In Section 3 we separately treat the lattice case.
We shall consider only hypercubic lattices. The analog of (1) is obtained by
interpreting Di as the lattice Laplacian. In lattices contact interactions
mean on-site interactions which exist in any dimension and define the so-
called Bose–Hubbard Hamiltonians. Incidentally, we shall obtain common
exact eigenstates in any dimension d \ 2 for a larger family of Hamiltonians,

Hlattice=± C
OrrŒP
(agrŒ−a

g
r )(arŒ−ar)+C

r
fr(nr)−m C

r
nr

+C
d

i=1
C

(r− rŒ) || ei

fr, rŒ(nr, nrŒ). (8)

In the first term the summation goes over nearest neighbor pairs, agr and ar

create, resp., annihilate a boson at site r, nr=a
g
r ar, ei is the unit vector

along the ith coordinate axis, m is the chemical potential and fr and fr, rŒ

are real functions with fr(n)=0 if n=0, 1 and fr, rŒ(m, n)=0 if mn=0.
Among others, every spin-12 nearest-neighbor XXZ Heisenberg model,
including the planar and the ferro- and antiferromagnetic isotropic models,
is a member of this family (with fr(t)=+. if t \ 2). However, there are
two limitations in the lattice case that we do not meet in the continuous
one. First, the condition for finding the eigenstates is a set of transcenden-
tal Diophantine equations, in contrast with the algebraic ones in the con-
tinuous space version. We find some solutions but cannot pretend to find
all. Second, the solutions we find are only for N [ L[d/2] where [ · ] means
integer part, and this seems to be an intrinsic limitation, due to the boun-
dedness of Hlattice. In hard-core models, particle-hole transformation yields
eigenstates also for N \ |L|−L[d/2].

Finally, we note that both in the continuum and on lattices there is
a family of exact eigenstates whose energy tends to zero as the volume
increases. In two and three dimensions these states may contain N=
o(L2/3) particles. They correspond to gapless excitations above the grand
canonical ground state if this latter belongs to N=0 and, thus, has zero
energy. This is the case, e.g., if the interaction is repulsive and the chemical
potential is zero or negative (and we take the plus sign in (8)), but may also
occur with attractive interactions, as in the isotropic Heisenberg ferro-
magnet.
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2. BOSONS IN CONTINUOUS SPACE

2.1. Theorems and Proofs

For spinless fermions all states share the property (P3). This obser-
vation is the starting point of the construction of such eigenstates for
(spinless) bosons in more than one dimension.

We introduce the short-hands R=(r1,..., rN) and K=(k1,..., kN).
A pair K, KŒ will be called allowed if both sets contain N different vectors
and for any i and j, ki+k −j is in Ad — (2p/L) Zd, where Zd denotes the set
of d-dimensional integers. We have the following.

Lemma 1. A pair K, KŒ is allowed if and only if both sets contain
N different vectors, and there exist d-dimensional integers ni, n −i and a
(complex) vector t such that ki=(2p/L) ni+t and k −i=(2p/L) n −i−t for
every i.

If both K and KŒ contain N different vectors of the above form, the
pair is clearly allowed. On the other hand, if the pair K, KŒ is allowed,
choose, e.g., t=k1. Then k −i+t=k1+k −i is in Ad for every i and
ki−t=(ki+k −1)−(k

−

1+k1) is also in the Abelian group Ad for every i.
Let us consider the product of two Slater determinants,

kK, KŒ(R)=det[e ikl rm] det[e ikŒl rm]= C
p, pŒ ¥ SN

(−)p (−)pŒ e i ;
N
j=1 (kp(j)+kŒpŒ(j)) rj. (9)

For any allowed pair K, KŒ, kK, KŒ has the properties (P1)–(P3). It is also
an eigenstate of −; Di, provided that ki ·k

−

j=0 for any i, j, a condition
which can be satisfied above one dimension: Since ;i (kp(i)+k −pŒ(i))

2=
;i (ki+k −pŒp −1(i))

2, the (N!)2 plane waves in (9) may belong to at most N!
different eigenvalues. Thus, kK, KŒ is an eigenstate if ;i (ki+k −p(i))

2=
;i (ki+k −i)

2 or, equivalently,

C
N

i=1
ki ·k

−

p(i)=C
N

i=1
ki ·k

−

i (10)

for all permutations p ¥ SN, which trivially holds if every ki is orthogonal
to every k −j. The following theorem suggests that there can be a huge
redundancy in these equations. It extends the above example to further
eigenstates and shows that for K and KŒ it suffices to satisfy only (N−1)2

equations.
Below we use the notation (i1i2 · · · im) for the cyclic permutation

carrying i1 into i2, etc., im into i1.
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Theorem 1. Let K, KŒ be an allowed pair. The following assertions
are equivalent.

(i) Equation (10) holds for p=(j j+1) with 1 [ j [N−1, for
p=(j j+1 j+2) and (j j+2 j+1) with 1 [ j [N−2 and for p=
(j l j+1 l+1) and (j l+1 j+1 l) with 1 < j+1 < l < N.

(ii)

(kj+1−kj) · (k
−

l+1−k −l)=0, 1 [ j, l [N−1. (11)

(iii) Equation (10) holds true for all permutations. As a consequence,
kK, KŒ is an eigenstate of the kinetic energy belonging to the eigenvalue
; (ki+k −i)

2 whose degeneracy is at least (N!)2: kK, KŒ is the linear combi-
nation of (N!)2 different, pairwise orthogonal, N-particle plane waves.
Furthermore, each occurring plane wave is associated with N different
wave vectors chosen from {ki+k −j}

N
i, j=1 whose all the N2 elements are

different.

Since (iii) obviously implies (i), it suffices to show that (ii) follows from
(i) and implies (iii).

(i) S (ii). Observe that we impose (10) for (N−1)2 different permu-
tations, and this is just the number of Eqs. (11) we want to prove. Writing
(10) for p=(j j+1) we immediately obtain (kj+1−kj) · (k

−

j+1−k −j)=0.
If Ep denotes the Eq. (10) then E(j j+1 j+2)−E(j j+1)−E(j+1 j+2) yields
(kj+2−kj+1) · (k

−

j+1−k −j)=0 and E(j j+2 j+1)−E(j j+1)−E(j+1 j+2) yields
(kj+1−kj) · (k

−

j+2−k −j+1)=0. Moreover, E(j l j+1 l+1)−E(j l)−E(j+1 l+1) is
equivalent with (kl+1−kl) · (k

−

j+1−k −j)=0 from which the last equation
follows by interchanging j and l.

(ii) S (iii). First, we note that (11) implies (kj−kl) · (k
−

m−k −n)=0
for all j, l, m, n. If p=(j l), (10) is equivalent with (kj−kl) · (k

−

j−k −l)=0.
For a general p different from the identity we write down the Eq. (10)
for p and for p−1 (which may be the same) and rearrange them as
; ki · (k

−

p(i)−k −i)=0 and ; kp(i) · (k
−

i−k −p(i))=0, respectively. The sum of
them yields ; (ki−kp(i)) · (k

−

p(i)−k −i)=0 which holds because each term
separately vanishes. The difference gives ; (ki+kp(i)) · (k

−

p(i)−k −i)=0 from
which we subtract 2k1 ·; (k −p(i)−k −i)=0. Again, the resulting equation
holds because each term equals zero. It remains to show that in kK, KŒ there
are (N!)2 different plane waves and in each of them N different wave
vectors. For this we note that all the N2 wave vectors ki+k −j are different:
ki+k −j=kl+k −m with (i, j) ] (l, m) would be in conflict with (11). Now
the coincidence of two plane waves would mean kp1(i)+k −pŒ1(i)=kp2(i)+k −pŒ2(i)
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for p1 ] p2, p
−

1 ] p
−

2 and for all i, which is impossible; nor can we have
ki+k −p(i)=kj+k −p(j) unless i=j. This ends the proof.

Let us remark that (11) is equivalent with

E(kj+k −l)+E(kj+1+k −l+1)=E(kj+k −l+1)+E(kj+1+k −l) (12)

where E(p) is the one-particle energy, p2. That is, the two-particle energy is
conserved during an elastic collision of two particles, see also later.

The general solution of (11) can easily be obtained. The vectors
ki+1−ki and k −j+1−k −j must be in different, orthogonal, subspaces of Rd.
One vector from each set, for example k1 and k −1, can be arbitrarily chosen
from Ad. In two dimensions both subspaces are one-dimensional and we
have

ki=k1+
2p
L
pi(l0, m0), k −i=k −1+

2p
L
p −i(m0, −l0) (i=2,..., N). (13)

Here l0 and m0 are integers at least one of which is different from zero,
p2,..., pN are different nonzero integers and the same holds for p −2,..., p

−

N. In
three dimensions one of the subspaces is one-, the other is two-dimensional.
Without restricting generality we may suppose that kj−ki are in a one-
dimensional subspace. Let n0 be any nonzero integer vector. Since the sub-
space orthogonal to n0 has an infinite intersection with Z3, there is no
problem to choose the vectors of KŒ. So we have

ki=k1+
2p
L
pin0, k −i=k −1+

2p
L

n −i (i=2,..., N), (14)

where pi are different nonzero integers and n −i are different nonzero integer
vectors orthogonal to n0.

A complex vector t (the same one which has appeared in Lemma 1)
can be added to k1 and subtracted from k −1 without changing the eigen-
value or the eigenfunction: it is a kind of gauge variable which affects only
the decomposition of kK, KŒ in the product of two determinants.

We note that the two examples given in the Introduction corre-
spond to kK, KŒ with K=± 2pL (n, 0), KŒ=± 2pL (0, m) and K=± pL (n, n), KŒ=
± pL (n, −n), respectively.

The question naturally arises whether with Theorem 1 we have
described all the eigenstates of the kinetic energy operator satisfying
(P1)–(P3). For the moment we cannot even exclude the existence of other
eigenstates kK, KŒ which do not fall under the authority of Theorem 1. For
a general kK, KŒ with an allowed pair K, KŒ, some elements of {ki+k −j}i, j
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may coincide and, thus, the number of different wave vectors can be less
than N2. This may also imply that, by cancellation, the number of different
N-particle plane waves contributing to kK, KŒ is less than (N!)2. (Cancella-
tion occurs if {ki+k −a(i)}

N
i=1={ki+k −b(i)}

N
i=1 for two permutations a and b

of different parity. It is easily verified that for N=2 and 3 this is not pos-
sible but can take place for N \ 4. An example for d=2 and N=4 is
K=2p

L ((0, −1), (1, 0), (0, 1), (−1, 0)) and KŒ=2p
L ((−2, 1), (1, 1), (−1, 0),

(0, 0)) with a=(2 4) and b=(1 2)(3 4).) As a consequence, some of the
Eqs. (10) could not be satisfied but kK, KŒ still could be an eigenstate. In the
following, we exclude this and all other possibilities.

Theorem 2. For d > 1, among the eigenstates of the kinetic energy
which satisfy the conditions (P1)–(P3) those described in Theorem 1
provide a basis. In one dimension such eigenstates do not exist.

To begin the proof, we note that an eigenstate of the kinetic energy
satisfying (P1) and (P2) is a finite linear combination of symmetrized plane
waves,

k(R)=C
a ¥ I
aak

+
Pa(R). (15)

In this expression a goes over some index set I, Pa=(pa1 ,..., p
a
N),

k+Pa(R)= C
p ¥ SN

e i ;j pap(j)rj (16)

and, for each a, all pai are in Ad and ;i (p
a
i )
2 is independent of a. If

aa are complex, k=kRe+ikIm where kRe=;a ¥ I (Re aa) k
+
Pa and kIm=

;a ¥ I (Im aa) k
+
Pa. It is easily seen that (P3) holds for k if and only if it

holds both for kRe and kIm. Therefore, when looking for a basis among
(P1)–(P3) eigenstates, we can limit our considerations to functions (15) with
real coefficients. To further specialize our choice of a basis, we need the
notion of minimality. When writing (15), we understand that all the pos-
sible contractions in k have been made, so that aa ] 0 if a ¥ I and the sets
{pai }

N
i=1 are different for different a (but may overlap with each other). We

call the orthogonal set {k+Pa}a ¥ I of (P1), (P2) eigenstates, all belonging to
the same energy, the support of k and denote it by supp k. A (P1)–(P3)
eigenstate will be called a minimal function if it is the unique (P1)–(P3)
eigenfunction (apart from a constant multiplier) in the linear span of its
own support.
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It will suffice to study only minimal functions because of the following.

Lemma 2. Among the (P1)–(P3) eigenstates there exists a basis
formed by minimal functions.

Suppose that f is a non-minimal (P1)–(P3)-eigenfunction. It is enough
to show that it can be decomposed as f=af1+bf2 where f1 and f2 are
(P1)–(P3)-eigenfunctions whose support is strictly smaller than that of f.
Then, if fi is not minimal, it can be decomposed in the same manner as
f and, in a finite number of steps, we arrive at an expression of f as a sum
of minimal functions. Now, because f=;a ¥ I aak

+
Pa is not minimal, its

support spans an at least two-dimensional subspace of (P3)-eigenstates.
Take here a fŒ=;a ¥ I bak

+
Pa which is linearly independent of f (and may

have vanishing coefficients). Choose a b such that bb ] 0 and define
f1=f−

ab
bb
fŒ. Take a c ] b and define f2=fŒ−

bc
ac
f. Then

f=11−abbc
acbb
2−1 f1+1

bb
ab
−
bc
ac
2−1 f2 (17)

is the decomposition we were looking for.
From now on, we shall suppose that k also satisfies (P3) and is

minimal. We are going to prove that the minimal functions are precisely the
eigenstates described in Theorem 1.

First we consider N=2. The simplest (P1)–(P3)-eigenstates are of the
form

k(r1, r2)=e i(p1r1+p2r2)+e i(p2r1+p1r2)−e i(q1r1+q2r2)−e i(q2r1+q1r2)

=k+P (r1, r2)−k
+
Q(r1, r2) (18)

where p1, p2, q1, q2 ¥ Ad and

p1+p2=q1+q2, p21+p22=q21+q22 (19)

or equivalently,

p1+p2=q1+q2, p1 ·p2=q1 ·q2. (20)

These eigenstates are certainly minimal, because a (P3)-eigenstate must
contain at least two symmetrized plane waves.

In any dimension Eqs. (19) have trivial solutions, p1=q1 and p2=q2
with pi ¥ Ad arbitrary, which are useless because they yield k(r1, r2) — 0.
Thus, we must impose {p1, p2} 5 {q1, q2}=”, since an overlap would
imply coincidence of the two sets. Moreover, if p1=p2=p then
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q1=q2=p, a solution already discarded. Hence, in any nontrivial solution
of (19), p1, p2, q1 and q2 are four different vectors.

In one dimension, if any of the four numbers is zero, we obtain a
trivial solution. In the opposite case q2=p1 p2/q1. This we insert in the first
of Eqs. (19) to find (p1−q1)(q1−p2)=0 which, again, leads to a trivial
solution.

For d > 1 let p1, p2, q1 and q2 be any nontrivial solution of Eqs. (20).
Choose an arbitrary vector k −2 and introduce k1=q1−k −2, k2=p2−k −2 and
k −1=p1−q1+k −2. Then k1 ] k2 and k −1 ] k −2. The original vectors can be
written in the form p1=k1+k −1, p2=k2+k −2, q1=k1+k −2 and, because
of the first of Eqs. (20), q2=k2+k −1. Furthermore, (20) implies (k2−k1) ·
(k −2−k −1)=(p2−q1) · (q1−p1)=0. Thus, the eigenstate (18) takes on the
form prescribed in Theorem 1. Clearly, k −2 plays the role of the gauge
vector t.

It remains to show that minimal eigenfunctions, being the sum of more
than two symmetrized plane waves, do not exist for N=2. Let us suppose
the opposite, i.e., that for some n > 2 there is a minimal eigenfunction
k(r1, r2)=;n

m=1 amk
+
Pm, where Pm=(pm1 , p

m
2 ) and (pm1 )

2+(pm2 )
2 is inde-

pendent of m. Because of the minimality, identical vanishing of k(r, r)=
2;n

m=1 ame
i(pm1 +pm2 ) r implies that also pm1+pm2 is independent of m (indeed

possible for n > 2, see Lemma 3 later), and ;n
m=1 am=0. But then

k(r1, r2)=;n−1
m=1 am[k

+
Pm(r1, r2)−k

+
Pn(r1, r2)], where each term of the sum

is a minimal eigenfunction of the type (18), so k could not be minimal.
Thus we have shown the theorem for N=2.

We complete the study of the case N=2 by answering the following
question: Given p1 and p2 ] p1, both in Ad, how to obtain all the solutions
of Eqs. (19) for q1 and q2?

Lemma 3. Let p1 ] p2, both in Ad, and consider the sphere S in Rd

drawn over p1−p2 as a diameter. There is a one-to-one correspondence
between nonzero orthogonal pairs of vectors in the intersection of S with
Ad and the solutions of Eq. (19) for {q1, q2}. If a and b form such a pair,
the corresponding solution is q1=p1−a=p2+b and q2=p2+a=p1−b.

If there is a pair {q1, q2} ] {p1, p2} which solves (20), we use the
parametrization with an allowed pair K, KŒ described above and define
a=k −1−k −2 and b=k1−k2. Then q1 and q2 are as asserted, a ·b=0 and
p1−p2=a+b. As we have seen in Lemma 1, both a and b are in Ad and,
because they are orthogonal and sum up to p1−p2, they are also on the
sphere

S={r ¥ Rd : |r− 12(p1−p2)|=
1
2 |p1−p2 |}. (21)
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Oppositely, let a ¥ Ad 5 S and define q1=p1−a and q2=p2+a. Then
q1+q2=p1+p2 and q1 ·q2=p1 ·p2+a · (p1−p2)−a2=p1 ·p2 because a ¥ S.
Now along with a, b=p1−p2−a is also in the intersection and a ·b=0.
So vectors in Ad 5 S occur in orthogonal pairs whose elements add up to
p1−p2 and provide the same solution.

Any nontrivial partition of (2p/L)−2 |p1−p2 |2 into the sum of the
square of 2d integers gives rise to at least one solution of (19). Therefore, if
p1−p2 has two nonvanishing coordinates, there exists at least one orthog-
onal pair of vectors described in the lemma. On the other hand, if only a
single coordinate is nonvanishing, there may not be any nontrivial solution
for q1, q2 (take, e.g., d=2 and p1−p2=(2p/L)(0, 3)).

We turn to the case N> 2. Since k(R) is a symmetric function, for
(P3) to hold k(r, r, r3,...) — 0 suffices. To see how k(r, r, r3,...) can vanish,
we write

k+Pa(R)= C
1 [ l < m [N

k lmPa(R) (22)

with

k lmP (R)=[e
i(pl r1+pmr2)+e i(pmr1+pl r2)] C

p ¥ SN : p(1)=l, p(2)=m
e i ;

N
n=3 pp(n)rn

=k+{pl , pm}(r1, r2) k
+
{pj}j ] l, m (r3,..., rN). (23)

Here we have used again the notation (16) for symmetrized plane waves.
Now k lmPa(r, r, r3,...) can be cancelled as a whole by an identically equal
k stPb(r, r, r3,...). The condition of an identical equality imposes

{paj }j ] l, m={p
b
j }j ] s, t (24)

and

pal+pam=pbs+pbt , (pal )
2+(pam)

2=(pbs )
2+(pbt )

2 (25)

where we have added the last equality which comes from the fact that k+Pb
must belong to the same energy eigenvalue as k+Pa. So for the vectors
pal , p

a
m, p

b
s , p

b
t we find precisely Eqs. (19). Again, we have to discard the

trivial solutions. They would yield Pa=Pb, so k+Pa(R) — k
+
Pb(R), which

contradicts the supposed contracted form of k. Considering Eq. (25) for
every pair l < m, we conclude that for each a the set {paj }

N
j=1 contains N

different vectors. Furthermore, if k l1m1Pa (r, r, r3,...) — k
s1t1
Pb (r, r, r3,...) then

{paj }
N
j=1 5 {pbj }Nj=1={paj }j ] l1, m1={p

b
j }j ] s1, t1 , and for the same a and b no
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other choice of l < m and s < t can yield the equality (24). Thus, to
annihilate k+Pa(r, r, r3,...) we need one term from the decomposition (22) of
N(N−1)/2 different k+Pb. Solving the N(N−1)/2 Eqs. (25) for {pbs , p

b
t },

one for each pair l < m, we may (but for the moment we cannot say
we really do) obtain N(N−1) different vectors which, together with the
N vectors of Pa, form a set of N2 wave vectors. Recall that kK, KŒ of
Theorem 1 are also constructed with the help of N2 vectors ki+k −j. So far
we have found that minimal eigenfunctions share some attributes of kK, KŒ,
but have not seen as yet that these latter themselves are minimal.

Lemma 4. kK, KŒ of Theorem 1 are minimal (P1)–(P3)-eigenfunctions.

In the present case the index set is SN. Let (K+aKŒ)j=kj+k −a −1(j). We
have to prove that

kK, KŒ= C
a ¥ SN

(−)a k+K+aKŒ (26)

is the unique (P1)–(P3)-eigenstate that can be obtained as a linear combi-
nation of the functions {k+K+aKŒ}a ¥ SN . According to Eqs. (15), (22) and (23),
a general function over the above basis reads

k(R)= C
a ¥ SN

aak
+
K+aKŒ(R)

= C
a even

C
l < m
[aak

+
{(K+aKŒ)j}j=l, m (r1, r2)

+a(lm) ak
+
{(K+(lm) aKŒ)j}j=l, m (r1, r2)] k

+
{(K+aKŒ)j}j ] l, m (r3,...). (27)

We may suppose that the coefficient of the identity is nonzero—this can
always be achieved by renumbering the vectors of KŒ, if necessary—and
normalize k so as to have aid.=1. In (27) we have regrouped the terms
which can cancel each other if r1=r2. The point is that, given (a, l < m),
there is a unique (b, s < t) such that Eqs. (24) and (25) hold true, namely,
b=(l m) a, s=l and t=m. This is because ki+k −j uniquely determines
(i, j). Thus, if k is a (P3)-eigenstate then for every a and every pair l < m,
a(lm) a=−aa. Starting with (l m) ¥ SN, a(lm)=−1, and the products of any
two, three, etc. of them appear with coefficients (−)2, (−)3, etc., respec-
tively. Since the inversions generate SN, we conclude that aa=(−)a for
each a ¥ SN and, thus, k=kK, KŒ, proving that the latter is minimal.

The last step is to show that no other type of minimal eigenfunctions
exists. This we have seen for two particles and will prove for N \ 3 by
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induction. Suppose the claim is verified for any n < N. Let P=
1a ¥ I {pai }Ni=1, i.e., the full set of wave vectors used to define the minimal
(P1)–(P3) eigenfunction (15). After resummation this function reads

k(R)= C
p ¥P

bpe ip · rNfp(r1,..., rN−1). (28)

Here every fp is a uniquely determined (P1)–(P3) eigenfunction of
−;N−1

i=1 Di which, by the induction hypothesis, is a linear combination of
N−1-variable eigenfunctions of the type described in Theorem 1. (That
fp is actually minimal and, thus, equals a single function of this type, will
follow from the proof.) The sum (28) can be considered as an embedding of
any given of its terms into a minimal (P1)–(P3) eigenfunction. The (N−1)2

wave vectors appearing in each minimal component of fp are of the form
ki+k −j with 1 [ i, j [N−1 and satisfy the orthogonality relations (11).
Consider the function

C
p, pŒ ¥ SN−1

(−)ppŒ exp 3 iprN+i C
N−1

j=1
(kp(j)+k −pŒ(j)) rj 4

in the term p of (28). The symmetrical embedding of the plane wave
belonging to (p, pŒ) implies the presence, in the expansion of k, N−1 other
plane waves, one for each j, in which p and kp(j)+k −pŒ(j) are interchanged.
So kp(j)+k −pŒ(j) ¥P for j=1,..., N−1 and embedding of the (N−1)-par-
ticle plane wave exp{iprj+;N−1

l ] j (kp(l)+k −pŒ(l)) rl} in fkp(j)+kŒpŒ(j) (r1,..., rN−1)
implies that p=k+kŒ, and {(k, kŒ)} 2 {(kj, k −j)}N−1j=1 satisfy (11). We
conclude that in P there is a subset parametrized by an allowed pair K, KŒ,
both members containing N vectors such that (11) holds, and all the corre-
sponding symmetrized plane waves k+K+aKŒ occur in the support of k. Since
k is minimal, this is the support of k, and k=kK, KŒ. This ends the proof of
the theorem.

2.2. Remarks

1. The representation of a bosonic state as the product of two Slater
determinants is, in a certain sense, natural. Intuitively, we can imagine a
spinless boson to be built up of two coinciding half-spin fermions of oppo-
site spins, and the two Slater determinants as wavefunctions of the two
kinds of fermions. Also, the eigenstates we are looking for are twice con-
tinuously differentiable (C2, in fact, analytic) functions of all coordinates
and vanish, therefore, at least quadratically at ri=rj. The C2-functions of
all coordinates satisfying (P1)–(P3) form a linear space L, and one may
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suspect that kK, KŒ with allowed pairs is a generating system of this space.
A way to prove it would be to take an arbitrary function of L, divide and
re-multiply it with a ‘‘nice’’ antisymmetric function and expand both—now
antisymmetric—factors as a linear combination of Slater determinants
which are known to form a basis in the antisymmetric subspace. The crux
is the choice of the auxiliary antisymmetric function. It should yield an at
least L2-convergent expansion for both factors, and the product of the two
expansions should still be L2-convergent. Because L is dense in the sym-
metric subspace of L2(LN), a successful proof would imply that kK, KŒ with
allowed pairs linearly span the symmetric subspace. Note, however, that
this would be a very bad basis for proving off-diagonal long-range order,
see Remark 9 later.

2. The form of kK, KŒ, corresponding to (28), is

kK, KŒ(R)= C
N

l, m=1
(−)2N−l−m e i(kl+kŒm) · rNfkl+kŒm

(r1,..., rN−1), (29)

where fkl+kŒm
=kK0{kl }, KŒ0{kŒm}

.

3. Theorem 2 is not claiming that eigenstates, being, for instance, the
product of more than two Slater determinants, do not exist. It is easily seen
that in d \ n dimensions, with n pairwise orthogonal k-sets one can obtain
eigenstates in the form of a product of n Slater determinants. However, for
n even these states can be expanded in the basis {kK, KŒ} (as for n odd they
can be expanded in the basis of Slater determinants). As an example, the
expansion of a product of four determinants belonging to K, K1, K2 and K3,
respectively, reads

kK, K1, K2, K3= C
a, b ¥ SN

(−)ab kK, K1+aK2+bK3, (30)

irrespective of the space dimension or whether the product is an eigen-
function.

4. The energy of the eigenstates kK, KŒ is easy to estimate. In two and
three dimensions the length of the vectors in one of the two sets has to
increase at least linearly, so the energy is at least of the order of N3/L2

(because of the orthogonality (11), at the same time

C ki ·k
−

i=k1 ·C (k −i−k −1)+k −1 ·C (ki−k1)+Nk1 ·k
−

1

is only of order N2/L2). At fixed positive densities this is much larger than
the ground state energy of any physically meaningful HN (which is smaller
than a multiple of N), and these states play no role in thermodynamics
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either. However, in cases when the grand-canonical ground state is the
vacuum, N=0, as, e.g., for repulsive pair interactions and zero or negative
chemical potentials, we obtain gapless excitations in the form of N=
o(L2/3)-particle eigenstates whose energy vanishes with the increasing
volume.

5. Lemma 3 shows that degeneracy of minimal states can occur.
Because of nonvanishing overlaps, within a degenerate subspace the
minimal states may not be linearly independent and one may not choose an
orthogonal basis of them.

6. kK, KŒ are eigenstates of the total momentum operator with eigen-
value Nq=; (ki+k −i). Multiplying and dividing kK, KŒ by exp iq ; rj yields

kK, KŒ(R)=e iq ; rjkK− k̄, KŒ−kŒ(R) (31)

with k̄=N−1; ki and K− k̄=(kj− k̄)Nj=1 and similar for the primed
variables. If kK, KŒ is an eigenstate of the kinetic energy then kK− k̄, KŒ−kŒ is a
zero-momentum eigenstate whose k-sets satisfy not only (11) but also the
more specific equations (ki− k̄) · (k −j−kŒ)=0 which are easy to verify.
Replacing ki− k̄ by ki and k −i−kŒ by k −i we obtain the canonical form of
minimal functions:

Corollary. A basis of (P1)–(P3) eigenstates can be chosen among the
functions

kq, K, KŒ(R)=e iq ; rjkK, KŒ(R) (32)

where q ¥ Ad, Nq is the total momentum and kK, KŒ is a zero-momentum
minimal eigenfunction. Namely, K, KŒ is an allowed pair with ki ·k

−

j=0 for
any i and j and ; ki=; k −i=0.

In the right-hand side of Eq. (32) R can be replaced by (ri− r̄)Ni=1
where r̄=N−1;N

i=1 ri.

7. Equations (19) and (25) suggest to interprete the (P1)–(P3) eigen-
states of the kinetic energy operator as stationary states of a system of
impenetrable, pointlike bosons which interact with each other through
elastic collisions. Clearly, there exists no self-adjoint Hamiltonian with a
dense domain in the symmetric subspace of L2(LN) which would describe
such a system! The states we have found cover only a very small fraction
(roughly ’ (N!)−2) of the Hilbert space. Since the suitable operator would
be HN with infinite repulsive delta-interactions, Theorem 2 provides an
independent proof of the otherwise known fact, cf. the Introduction, that
above one dimension −; Di, defined as a symmetric operator H0 on
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C.0 (L
N01i ] j {ri=rj}), has no self-adjoint extension describing such an

interaction. The states characterized in the above theorems are in the
domain of H0, the closure of H0. In two and three dimensions they are
eigenstates of any Hamiltonian HN with a properly defined contact
interaction, and the only eigenstates in the domain of H0. Any such HN is a
self-adjoint extension of H0 or H0, so densely defined in L2(LN), and
having infinitely many other symmetric eigenstates, which do not vanish
(even diverge) at particle encounters. As suggested in the Introduction, we
can orthogonally decompose any HN in an interaction-dependent part and
Helastic, cf. Eq. (7).

8. Because of their simple form, some basic properties of minimal
functions can be studied easily. Nodal surfaces, for example, can be iden-
tified if the function is written in the canonical form (32). Let V and VŒ
be the orthogonal subspaces containing kj and k −j, respectively. Since
det[e ikl rm] — 0 if ri− rj is in VŒ and det[e ikŒl rm] — 0 if ri− rj is in V, both for
any i ] j, we find that kK, KŒ(R) — 0 if ri− rj is in V 2 VŒ for a pair i ] j. So
there is a regular long-range exclusion effect, although it concerns only a
set of zero Lebesgue measure in the configuration space. This effect can be
amplified by particular choices of K or KŒ, that we can see easier on the two-
point correlation function. A straightforward computation of this latter
yields

r2(0, r) —N(N−1)Od(r1) d(r2− r)P

=r2
N
N−1
11− 1

N2
:C
l
e ikl r :

2211− 1
N2
:C
l
e ikŒl r :

22 (33)

where r=N/|L| is the uniform value of r1(r)=NOd(r1− r)P and aver-
aging means integration over r1,..., rN in L with the weight function
|kK, KŒ |2/||kK, KŒ ||2. In the derivation of (33) the minimality of kK, KŒ is
exploited via the property that ki+k −j=kl+k −m implies i=l and j=m.
For most choices of K and KŒ, r2(0, r) % r2 outside a small neighborhood
of V 2 VŒ where it vanishes. In general, let GK be the set of points r in L
such that kl · r is an integer multiple of 2p for every l. GK is an Abelian
group with respect to addition modulo L which contains VŒ as a subgroup
and may contain translates of VŒ. For example, for i=1,..., d letMi be the
greatest common divisor of {(L/2p) kni}

N
n=1 where kni is the ith component

of kn. Then GK contains the points with coordinates xi=miL/Mi, where mi
is any integer between −Mi/2 and Mi/2. Defining GKŒ analogously, we get
another Abelian group containing V and maybe some translates of it. Now
r2(0, r)=0 if and only if r is in GK 2 GKŒ and, as we can check also directly,
kK, KŒ(R)=0 if (and only if ) ri− rj is in GK 2 GKŒ for a pair i ] j.
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9. In the eigenstates kK, KŒ there is no off-diagonal long-range order:
The associated one-particle reduced density matrix, s, has N2 nonvanishing
eigenvalues, each of which is equal to 1/N. Indeed, using that all kl+k −m
are different, a straightforward calculation of the integral kernel of s yields

s(r, rŒ)=N ||kK, KŒ ||−2 F
L
N−1
kK, KŒ(r, r2,...) k

g
K, KŒ(rŒ, r2,...) dr2 · · ·drN

=
1
N |L|

C
N

l, m=1
e−i(kl+kŒm)(r− rŒ). (34)

Because kK, KŒ is a momentum eigenstate as well, s is diagonal in momen-
tum representation and its eigenvalues are the diagonal elements. Fourier
transforming s(r, rŒ),

s(p, p)=
1
N

C
N

l, m=1
dp, kl+kŒm

. (35)

Since p=kl+k −m can hold for at most a single pair (l, m), the result
follows.

10. The results extend to systems in L1× · · · ×Ld rectangles with
periodic boundary conditions. The appropriate definition of Ad is
(2p/L1) Z× · · · ×(2p/Ld) Z. The orthogonality relation (11) holds for
example if {ki−kj} and {k −i−k −j} have disjoint subsets of nonvanishing
coordinates. The existence of other solutions depends on the rationality of
the ratios among Li.

3. EIGENSTATES FOR LATTICE MODELS

We consider the same problem as before on an L× · · · ×L part (now
L is a positive integer) of Zd with periodic boundary conditions. Defining
the lattice Laplacian as

(Dk)(r)= C
|rŒ− r|=1

[k(rŒ)−k(r)], (36)

e ikr with k=(k1,..., kd) is an eigenfunction of −D belonging to the eigen-
value E(k)=2;d

i=1 (1− cos ki). A pair K, KŒ is called allowed if both
{kj}

N
j=1 and {k −j}

N
j=1 contain N incongruent vectors modulo 2p and ki+k −j

is in Ad for all i, j. Now for an allowed pair K, KŒ, kK, KŒ as given by (9) is
an eigenstate of −;N

i=1 Di if

C
N

i=1
E(ki+k −p(i))=C

N

i=1
E(ki+k −i) (37)
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for all p ¥ SN, in which case (37) provides the eigenvalue. The analog of
Theorem 1 can be derived, based on the following observation. For
2d-dimensional complex vectors u and v let us introduce the dot product
u · v=;2d

j=1 ujvj, that is, without taking the complex conjugate in one of the
factors. Then, setting

v(k)=(cos k1,..., cos kd, i sin k1,..., i sin kd), (38)

the condition (37) is equivalent with

C
N

i=1
v(ki) · v(k

−

p(i))=C
N

i=1
v(ki) · v(k

−

i). (39)

The analog of the particular solution ki ·k
−

j=0 in the continuum case has
to satify v(ki) · v(k

−

j)=0 or ;d
l=1 cos(kil+k

−

jl)=0 for all i, j. For L odd no
allowed pair can solve these equations. For L even, in two dimensions,
a family of solutions is obtained by choosing ki2=p/2−ki1 and
k −i2=p/2−k

−

i1. If 4 is a divisor of L, the same choice works in three
dimensions if ki3+k

−

j3=p/2 for all i, j, e.g., ki3=k
−

i3=p/4 for all i. More
solutions, in particular, solutions also for L odd are provided by the
following theorem.

Theorem 3. Let K, KŒ be an allowed pair. The following assertions
are equivalent.

(i) Equation (39) holds for the permutations listed in part (i) of
Theorem 1.

(ii)

[v(ki+1)− v(ki)] · [v(k
−

j+1)− v(k −j)]=0, 1 [ i, j [N−1. (40)

(iii) Equation (39) holds for all permutations. As a consequence,
kK, KŒ is a (P1)–(P3) eigenfunction of the kinetic energy and, thus, of all
Bose–Hubbard Hamiltonians with purely on-site interactions. The eigen-
value is given by (37).

The proof is exactly the same as that of Theorem 1; it suffices to
replace everywhere ki by v(ki) and k −i by v(k −i). Also, condition (40)
expresses energy conservation in two-particle collisions, and is the same as
Eq. (12), if we use the suitable expression for the one-particle energy.

To find solutions of (40), it is convenient to rewrite it as

C
d

l=1
[cos(ki+1 l+k

−

j+1 l)+cos(kil+k
−

jl)− cos(ki+1 l+k
−

jl)− cos(kil+k
−

j+1 l)]=0.

(41)
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We will consider two families of solutions. Type 1 solutions exist for any L.
In two dimensions they are obtained by choosing an allowed pair with ki1
and k −i2 independent of i. In three dimensions we can choose, e.g., ki1, ki2
and k −i3 independent of i. In these examples Eq. (41) holds by a separate
cancellation of the d terms. Also, notice that the pair K, KŒ satisfies the
Eqs. (11). Rewriting the solution in the canonical form (31) or (32), the
constant components of the transformed vectors vanish and ki ·k

−

j=0
for all i, j. Recalling Remark 8 of the former section, this implies that
kK, KŒ(R)=0 whenever for some i, j the vector ri− rj is parallel to a coor-
dinate axis. Thus we obtain:

Corollary. Type 1 solutions of Eq. (40) are eigenstates of the more
general lattice Hamiltonian (8).

Type 2 solutions exist only for L even and are given by ki2=J−ki1
and k −i2=p−J−k

−

i1 which, in three dimesions, is completed with, e.g.,
ki3 chosen to be independent of i. Since the choice of J does not influence
the solution, we can fix J=p/2, as earlier.

The solutions of (41) we have presented above exist only for N [ L.
Indeed, in all these examples either in K or in KŒ a single component speci-
fies the vector. Since in both sets all the vectors must be incongruent, the
defining component must take on N different values out of L possible ones.
In higher dimensions the same kind of solutions can easily be given—for
example, in four dimensions we can fix the first two components in the K
set and the second two in the KŒ set. In general, we can freely choose N
incongruent vectors from a [d/2] dimensional subspace, which limits the
number of particles to N [ L[d/2]. If N° L[d/2], it is possible to choose
K, KŒ such that |ki |, |k

−

i |° 1 for each i. Then, in (37) we can expand the
cosine functions up to second order, and find that the smallest attainable
energy is of order L−2N1+

2
[d/2]. Thus, for N=o(L

2[d/2]
2+[d/2]) there are eigenstates

whose energy tends to zero as L goes to infinity. They correspond to
gapless excitations above the grand canonical ground state when this is the
vacuum (N=0 or parallel spins).

The reader may notice that part (iii) of Theorem 3 claims less than
that of Theorem 1. It is because Eq. (40) does not imply that ki+k −j are
different for different pairs (i, j). This nevertheless follows from (11) for
type 1 solutions, but a counterexample of type 2 is easily obtained. Let L
be even and choose ki2=p/2−ki1, (ki3 independent of i if d=3) and
k −i=ki. As a special choice of type 2, the pair K, KŒ=K solves Eq. (41)
and, for any (i, j), ki+k −j=kj+k −i. The same example shows that in the
sum over the N! symmetrized plane waves yielding the (P1)–(P3) eigenstate
kK, K (cf. Eq. (26)) there are coinciding terms: k+K+aKŒ=k

+
a
−1K+KŒ implies that
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k+K+aK=k
+
K+bK if b=a−1. Now a differs from its inverse if and only if it

contains at least one cycle longer than two. Thus, our example works for
all such a (but we need N> 2) and b=a−1. As a permutation and its
inverse have the same parity, the two occurrences of the same symmetrized
plane wave arrive with the same sign in kK, K.

Keeping the earlier definition of minimality, Lemma 2 remains valid:
Minimal functions form a basis among the (P1)–(P3) eigenstates of −; Di.
Type 1 eigenfunctions are minimal, as it is seen by applying Lemma 4. We
believe that all solutions of Eqs. (40), and only them, are minimal func-
tions. However, we cannot prove this and have only a weaker analog of
Theorem 2.

Theorem 4. If k is a minimal eigenfunction of −; Di then supp k
… {k+K+aKŒ}a ¥ SN for some allowed pair K, KŒ satisfying Eqs. (40).

For N=2 the assertion is equivalent with the stronger claim of
Theorem 2. The second of Eqs. (19) is to be replaced by

C
d

j=1
(cos p1j+cos p2j)=C

d

j=1
(cos q1j+cos q2j). (42)

Again, the trivial solution {p1, p2}={q1, q2} is to be excluded, but now
the four vectors need not be different. Indeed, with our earlier example
ki2=p/2−ki1 and k −i=ki for i=1, 2, pi=2ki and q1=q2=k1+k2 is a
nontrivial solution. When parametrizing a solution (18) with an allowed
pair K, KŒ, Eq. (42) coincides with (40) written for i=j=1. The minimality
of such a solution is trivial, and the proof that no other minimal function
exists is the same as in Theorem 2. The weaker assertion for a general
N can be shown as in Theorem 2 by starting with a weaker induction
hypothesis.
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